The wintering shorebirds (Aves, Charadrii) in Mauritania: principal species, and wetlands of major importance

M. OULD AVELOITT¹, M. EL MORHIT¹, J. LEYRER²

(Reçu le 03/08/2013; Accepté le 09/12/2013)

Abstract

The analysis of the distribution wintering waders in Mauritania demonstrated that most of these birds (77 %) are distributed on the Atlantic coast. In fact, this is mainly along this coast that the habitat preferences of this group (sand, mudflats, and near wet grassland) are relatively well represented. Also, the main shorebird populations in Mauritania can be classified into three categories based on their geographical distribution method: Species whose distribution is spread all along the Atlantic coast; these waders seem to favor any latitude. The Mauritanian coast for these species represents continuity between their wintering grounds in Western Europe and those of West Africa. Populations whose distribution is restricted to the northern region of Mauritania; the southern limit of their wintering areas is for these populations. Populations confined mainly in the southern coastal areas the southeastern coast of Mauritania represents, consequently, the northward extension of the main areas of these populations winter in West Africa. From this point of view, the Mauritanian territory constitutes, along through the migration east – Atlantic, a transition zone between Western Europe and West Africa; the northern part of the country plays a role analogous to that of Western Europe, while its southern part is similar to West Africa. The dividing line between the two sectors is represented by the line up of Nouakchott-Nema.

Keywords: Shorebirds, wintering, Diawling National Park, Banc d'Arguine National Park, wetland, Mauritania.

Résumé

L'analyse de la distribution des limicoles hivernants en Mauritanie a montré que la plupart de ces oiseaux (77 %) sont répartie sur la côte Atlantique. En fait, principalement le long de cette côte que les préférences d'habitat de ce groupe (sable, vasières et près de: prairie humide) sont relativement bien représentés. En outre, les populations d'oiseaux de rivage principal en Mauritanie peuvent être classées en trois catégories selon leur mode de distribution géographique: espèces dont la répartition s'étend tout au long de la côte Atlantique; ces échassiers semblent privilégier toutes les latitudes. La côte Mauritanienne pour ces espèces représente la continuité entre leurs aires d'hivernage en Europe occidentale et celles de l'Afrique de l'Ouest. Les populations dont la distribution s'restreintes à la région du Nord de la Mauritanie; la limite Sud de leur aire d'hivernage est pour ces populations. Les populations principalement confinées dans les régions côtières du Sud, que la côte sud-est de la Mauritanie représente, par conséquent, l'extension vers le nord des zones principales de ces populations hivernent en Afrique de l'Ouest. A ce point de vue, le territoire Mauritanie constitue, au long de la migration dans l'Est–Atlantique, une zone de transition entre l'Europe occidentale et d'Afrique de l'Ouest; la partie septentrionale du pays joue un rôle analogue à celui de l'Europe occidentale, tandis que sa partie méridionale est similaire à l'Afrique de l'Ouest. La ligne de démarcation entre les deux secteurs est représentée par la ligne de transition de Nouakchott à Nema.

INTRODUCTION

With many wetlands and 720 km of coast that belong the flyway East Atlantic, Mauritania plays a major role in the migration of water birds. Within these, shorebirds are the most important in their numbers and diversity. This is mainly due the presence of several large coastal wetlands which constitute the principal areas of stops and feeding ground for species that winter south of the Sahara. Of these areas the National Park of Arguin Bank in Mauritania is numerically the most important wintering site for waders along the East Atlantic Flyway (Trotignon et al., 1980, Engelmoer et al., 1984, Smit et Piersma 1989) not less than 2 million of the total of 7 million coastal waders exist here in winter. However, another 1,5 million waders winter along the W. African coast south of the Banc d'Arguin (Smit & Piersma 1989) and some of these are thought to follow the coast during northward migration (e.g. Knot *Caiidris canutus*, Dick et al., 1987).

This work represents a new approach to the analysis of wintering shorebirds based on the regular census data that spans a period of 5 years. This approach has been proposed in order to update and reinforce our knowledge of wintering waders, one of the major components of aquatic birds, in National Parks of the Banc d'Arguin and Diawling.

MATERIAL AND METHODS

The principal period considered in this analysis is from 2005

¹ University Mohamed V-Agdal, Faculty of Science, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat, Morocco. E-mail: morhit_med@yahoo.fr

² Department of Marine Ecology and Evolution, Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands

Figure 1: Location of wetlands which housed Mauritanian waders during the winters from 2005 to 2009

Table 1: Presentation by functional site, the implementation rate of counts synchronized to the whole period (2005-2009).

N°	Sites	2005	2006	2007	2008	2009	Total
1	Aleg	1	1	1	1	1	5
2	Mal	1	1	1	1	1	5
3	Bassin de N'Tiallakh	0	1	0	1	0	2
4	Tintane	1	1	1	1	1	5
5	Oum Lelli	1	1	1	1	1	5
6	Tali	1	1	1	1	1	5
7	mahmoda	1	1	1	1	1	5
8	Aftout	12	12	12	12	12	60
9	Chat Boul	12	12	12	12	12	60
10	Bell	12	12	12	12	12	60
11	Diawling-Tichilitt	12	12	12	12	12	60
12	Nair	0	0	1	1	1	3
13	naroumi	0	0	1	1	1	3
14	arel	0	0	1	1	1	3
15	ebel khaznaye	0	0	1	1	1	3
16	awatif	0	0	1	1	1	3
17	zira	0	0	1	1	1	3
18	PlageN-Mouhj	0	0	1	1	1	3
19	baie st jean	0	0	1	1	1	3
20	cap tim	0	0	1	1	1	3

to 2009 (5 years), but we also considered the period 2000-2005 to compare the number of wintering birds recorded in the two periods. The number of wetlands surveyed at least once during the winter between 2005 and 2009 amounted to 30 sites, 20 of which harbored shorebirds (Figure 1).

The mean number of each species in each of 20 wetlands is the sum of the populations recorded at each visit, which divides the number of field campaigns concerned with this site. The strength per nation of each species of wader is then calculated by adding the average number found in all 20 wetlands.

The digital data are taken into account between January 2005 and December 2009. We thus have four annual cycles, followed by monthly. The numbers located on the site are differentiated to compare with those observed on the altars outside the nature reserve. According to locality, digital data collected can correspond to almost all staff present throughout the functional site or the contrary; represent a very small proportion of shorebirds present at the local functional scale (Table 1).

The collected data allowed us to calculate a certain number of indications including:

Arenaria interpres	0	0	0	0	0	0	0	0	0	0	0	450	7550	2540	217	345	120	700	350	15
susoniqs sullonsV	0	0	886	0	0	0	0	34	154	3183	3006	0	0	0	0	0	0	0	0	0
Charadrius forbesi	0	0	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pluvialis squatarola	0	0	16	0	0	0	0	85	5	0	4	39	940	2215	1752	182	148	0	0	0
Charadrius Pecuarius	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
Charadrius dubius	0	0	519	0	0	0	0	308	57	237	422	0	0	0	0	0	0	0	120	0
Charadrius alexandrinus	0	0	372	0	0	0	0	903	16	146	328	0	200	0	11	200	0	0	0	0
Charadrius hiaticula	0	0	5591	0	0	0	0	2757	296	1467	2325	700	1020	10850	4525	1181	2365	0	120	0
Himantopus himantopus	29985	0	638	0	14950	0	50405	90	59	6293	8768	0	0	0	0	0	0	0	0	0
Cursorius cursor	0	0	1398	0	0	0	0	б	0	0	98	0	0	0	0	0	0	0	0	0
sndoəeyd sniuəwn _N	0	0	28	0	0	0	0	70	19	2	69923	0	20200	5907	1549	0	183	0	2	0
steupte suinomu ^N	0	0	28	0	0	0	0	21	3	1	1434	0	620	18	340	0	0	0	0	0
ringa stagnatilis	0	0	160	0	0	0	0	1719	17	70	1831	0	0	0	0	0	0	0	0	0
Actitis hypoleucos	0	0	545	0	0	0	0	ω	4	289	601	0	0	0	0	0	0	0	0	0
Ziringa totanus	0	0	2842	0	0	3670	6615	63	73	2215	313	0	13060	22200	2	123	0	0	12	0
Tringa ochropus	0	0	26	0	0	0	0	0	29	0	58	0	0	0	0	0	0	0	0	0
Philomachus xanguq	2255	2335	903	0	0	18585	39720	1193	840	1664	433	0	29	0	4	18	0	0	0	0
Tringa erythropus	0	0	84	0	0	0	0	27	6	14	111	0	0	0	0	0	0	0	0	0
ainaludən agniriT	0	0	744	0	0	0	0	169	48	781	1963	0	0	0	127	0	0	0	134	0
calidris alpina	0	0	1276	0	0	0	26430	3915	196	569	357	19000	106650	47700	12911	15303	2924	0	250	0
Calidris alba	0	0	367	0	0	0	0	3657	136	49	37	350	20000	2030	1608	1234	0	700	0	0
Calidris canutus	0	0	255	0	0	0	0	90	563	229	22	1500	68140	11500	5135	7280	1473	0	254	0
Calidris minuta	36500	32000	4682	15000	37000	40000	59500	15329	609	1565	1665	0	43600	2100	0	1060	0	0	0	0
Calidris ferruginea	0	0	3261	0	0	0	0	588	490	853	434	0	23121	7100	0	1490	0	0	0	0
Limosa lapponica	0	0	1451	0	0	0	0	14	18	12	9840	2000	90500	6710	4290	3416	1883	0	400	2625
szomil szomiJ	3500	10000	146	1780	6000	11500	11010	2795	519	8684	1032	0	0	0	0	0	0	0	0	0
Recurvirostra avosetta	0	0	163	0	0	0	0	31647	346	1320	5111	0	0	0	0	0	0	0	0	0
Nombre de visite	5	5	60	5	5	5	5	60	60	60	60	3	3	3	3	3	3	3	3	3
Sites	l Aleg	2 Mal	3 Bassin de N'Tiallakh	4 Tintane	5 Oum Lelli	5 Tali	7 mahmoda	3 Aftout	Chat Boul	0 Bell	1 Diawling-Tichilitt	2 Nair	3 naroumi	4 arel	5 ebel khaznaye	6 awatif	7 zira	8 PlageN-Mouhj	9 baie st jean	0 cap tim
4	Γ.	101	6	4	1.4.1		1	۳u	5	-	-	-	-	÷	-	-	-	-	-	0

Table 2: The principal wintering waders in Mauritania: the average for the period 2005-2009.

The average per site (EMS) obtained by dividing the sum of effective annual (January) identified by the number of years (between 2005 and 2009) when this site had been visited; the effective national average (ENM) of a species is the sum of its average workforce calculated for all 20 sites (ENM = Σ EMS).

RESULTS

The overall number of wintering waders in Mauritania amounted to more than 1314786 birds (Table 2); this number represents an increase of nearly 22% compared to that recorded for the period 2000-2004, this is caused by an increase in staff from a number of wading birds including the Common Redshank *Tringa totanus* (41516%), The Ringed Plover *Charadrius hiaticula* (15485%), the Black-winged Stilt *Himantopus himantopus* (5697%), the Eurasian Curlew *Numenius arquata* (1301%), Grey Plover Pluvialis squatarola (1116%). Only the number of Ruddy Turnstone *Arenaria interpres* as a significant decrease of approximately (-87%).

The most common species are: Little Stint *Calidris minuta*; Dunlin *Calidris alpina*, Black-winged Stilt *Himantopus himantopus*; Bar-tailed Godwit *Limosa lapponica*,

Table3: Effective of the major wintering waders in Mauritaniacalculated for the periods 2000-2004 and 2005-2009

Species	2000-2004	2005-2009
Recurvirostra avosetta	6777	38587
Limosa limosa	44025	56966
Limosa lapponica	121694	123159
Calidris ferruginea	33488	37337
Calidris minuta	238599	290610
Calidris canutus	96096	96441
Calidris alba	26144	30168
Calidris alpina	232290	237481
Tringa nebularia	3053	3966
Tringa erythropus	134	245
Philomachus pugnax	63548	67979
Tringa ochropus	87	113
Tringa totanus	123	51188
Actitis hypoleucos	894	1442
Tringa stagnatilis	456	3797
Numenius arquata	176	2465
Numenius phaeopus	48283	97883
Cursorius cursor	234	1499
Himantopus himantopus	1918	111188
Charadrius hiaticula	213	33197
Charadrius alexandrinus	345	2176
Charadrius dubius	546	1663
Pluvialis squatarola	443	5386
Charadrius forbesi	120	300
Vanellus spinosus	2416	7263
Arenaria interpres	97785	12287
TOTAL	1019887	1314786

The overall distribution of shorebirds is primarily along the Atlantic coast (Figure 1, Table 4); near about 77% of wintering birds were recorded on wetlands located on the west coast of Mauritania. Also, the four best sites for wintering waders in Mauritania are all Atlantic (Table 5); they combined a workforce of 820, 296 birds approximately 62% of the overall number of wintering birds Mauritania. Note that among the four wetlands, the Diawling National Park (PND) and The Banc d'Arguin National Park are already listed in the *Ramsar* Convention, Aleg and mahmoda are currently proposed for the listing.

Table 4: Effective of wintering waders in Mauritaniaby geographic sector

Geographic	Number of sites	Effective				
areas	prospected	Absolute	Related			
Atlantic Coast	14	1017896	77			
Inside the country	6	296892	23			

In general, the Waders in Mauritania can be grouped into three categories based on their distribution: the Species which occur all along the Atlantic coast, without any favored sites; The Ringed Plover *Charadrius hiaticula;* Kentish Plover *C. alexandrines;* Grey Plover *Pluvialis squatarola;* Dunlin *Calidris alpine;* Little Stint *Calidris minuta;* Common Redshank *Tringa tetanus;* indicate this tendency. The Species whose distribution is restricted to northern Mauritania, this tendency is represented by Eurasian Oystercatcher *Haematopus ostralegus;* Red Knot *Calidris canutus;* sanderling *C. Alba* and Curlew Sandpiper *C. ferruginea;* together with Bar-tailed Godwit *Limosa lapponica*.

Species found primarily on the southern Mauritania coast these are: Black-winged Stilt *Himantopus himantopus;* Pied Avocet *Recurvirostra avosetta;* European Golden Plover *Pluvialis apricaria;* Black-tailed Godwit *Limosa limosa.*

DISCUSSION

The geographical distribution of wintering birds is mainly along the Atlantic coast of Mauritania, even then its species distribution usually is in continental like Northern Lapwing *Vanellus vanellus;* Black-tailed Godwit *Limosa limosa;* Ruff *Philomachus pugnax.*

One of major reason in that are the favorable habitats for shorebirds (mudflats, sand and sandy beaches, rocky flats, salt marshes, swamps and wet grasslands) are more represented and more extensive along the Atlantic coast compared to continental wintering sites.

Table	5:	The	four	best	sites	wintering	waders	in
Mauri	itan	ia						

Sites	Absolute	Related
Naroumi	395630	30
Awatif	193680	15
Arel	120870	9
Diawling-Tichilitt	110116	8
Total	820296	62

On the other hand, the reception capacity of continental wetlands are limited by their fragility and temporality (the depth of the water is often very low) because they are located mostly in Sahelian regions and are often exploited. These are a source of non negligible disturbance for the birds. The only exceptions are represented by wetlands in the region of Mahmouda in the backcountry of the city of Nema which uses to host large numbers of wintering shorebird populations in Mauritania.

We also note that the distribution of a number of waders was essentially along the South Atlantic coast of Mauritania; they include Black-winged Stilt *Himantopus himantopus;* Pied Avocet *Recurvirostra avosetta* and Black-tailed Godwit *Limosa limosa*.

Other species like Eurasian Oystercatcher Haematopus ostralegus; Red Knot Calidris canutus; Sanderling C. Alba; Curlew Sandpiper C. ferruginea; or Bar-tailed Godwit Limosa lapponica; were distributed mainly along the northern sector of the Atlantic coast Mauritanian; this sector was consisted by the great area of wintering (Banc d'Arguin). Even in the case of Dunlin Calidris alpina, that demonstrates a continuous distribution throughout the Atlantic coast. It seems that the subpopulation *schinzii* of northwestern Europe and the population *alpina* winter in the southern part of Mauritania when the subpopulation schinzii in Iceland-Greenland and the population arctica rather spend the winter along the North-Atlantic coast (Pienkowski et Dick 1975, Smit et Piersma 1989). This may also be the case of Common Ringed Plover Charadrius hiaticula, which is a part of West-European winter in southern Mauritania.

CONCLUSION

From this point of view, the Mauritanian territory constitutes, along the through migration east – Atlantic, a transition zone between Western Europe and West Africa; the northern part of the country plays an important role analogous to that of Western Europe, while its southern part is similar to West Africa. The dividing line between the two sectors is represented by the lineup of Nouakchott-Nema.

REFERENCES

- Baker AJ, Piersma T, Rosenmeier L (1994). Unravelling the intraspecific phylogeography of Knots Calidris canutus: a progress report on the search for genetic markers. J. Ornithol, 135: 599–608
- Baker AJ, Piersma T, Greenslade AD (1999). Molecular versus phenotypic sexing in Red Knots Calidris canutus. Condor, 101:887–893
- Battley PF, Piersma T, Rogers DI, Dekinga A, Spaans B, Van Gils J (2004). Do body condition and plumage during fuelling predict northwards departure dates of Great Knots (Calidris tenuirostris) from north-west Australia? Ibis, 146: 46–60
- Benmergui M ; (2009). rapport de la mission ONCFS en Mauritanie du 11 au 27 janvier 2009 ONCFS
- Bouariche, B. (1996). Etude du peuplement d'oiseaux forestiers de Jbel Hamra (Maroc Nord-oriental): phénologie, reproduction & biogéographie.

- Dakki, M., Qninba,A., El Agbani,M.A., Benhoussaa, & Beaubrun, P.C. (2001). Waders wintering in Morocco: national population estimates trends and site-assessments Wader Study Group Bull., 96: 47-59.
- El Agbani, M.A. (1997). L'Hivernage des Anatidés au Maroc. principales espèces, zones humides d'importance majeure et propositions de mesures de protection. Thèse de doctorat d'Etat ès-Scienoes, Faculté des Sciences, Rabat: 186 pp.
- Ould Sidaty, Z. (2005). L'impact du *Typha australis* (Schum & Thonn)» sur la Biodiversité du Parc National du Diawling. Université d'Ouagadougou. Pages 45.
- Qninba A. (1999). Les Limicoles (Aves, Charadrii) du Maroc: synthèse sur l'hivernage à l'échelle nationale et étude phénologique dans le site Ramsar de Merja Zerga. Thèse. Doctorat d'Etat. Univ. Mohammed V, Fac. Sci., Rabat. 206 p.
- Rguibi Idrissi H., (2002). Analyses comparatives de la migration de quelques Passereaux au Maroc à l'aide des données de baguage et d'un suivi dans deux zones humides. Faculté des sciences Rabat.