The role of human activities in the transmission of stomach flukes *Paramphistomum microbothrium* (Fishoeder, 1901) (*Trematoda : Paramphistomatidae*) in Tessaout amont irrigation scheme, Central Morocco

Mjid Mohamed LAGHRIOUBI¹, Hammou LAAMRANI², Khalid KHALLAYOUNE², Mohamed GHAMIZI¹, Abderrahim DALAL¹ & Eline BOELEE⁴

(Received on 05/06/2002 ; Revised on 27/02/2003 ; Accepted on 09/09/2003)

In a cross section snail survey conducted in Tessaout Amont irrigation system in central Morocco, nine mollusk species belonging to seven families were found. The canals of irrigation traditionnels are transmission sites of schistosomiasis to *Schistosoma haematobium* and *Fasciola hepatica*. The transmission of *Paramphistomiasis* in the Haouz region is discussed.

Key words: *Bulinus truncatus* - *Pharamphistomum microbothurium* - Environment - Animal health - Irrigation in Morocco

Département de Biologie, Faculté des Sciences Semlalia, Marrakech

Département de Parasitologie et Maladies Parasitaires. Institut Agronomique et Vétérinaire Hassan II, BP 6202-Instituts, Madinate Al Irfane, Rabat

BP 881 Tabriquet, Salé, Currently A DSc candidate at Département de Biologie, Faculté des Sciences Semlalia, Marrakech.

International Water Management Institute, PO Box 2075 Colombo, Sri Lanka

Corresponding author ; email: Laghroubi@yahoo.fr
INTRODUCTION

Tessaout Amont irrigation system is located in the eastern part of the Haouz plain at 70 Km from Marrakech. The irrigation system was implemented in early 1970 after the construction of Moulay Youssef dam.

A few years later, the first cases of schistosomiasis were reported in 1976 (Moustaid & Touzara, 1983). The epidemiology and control of the schistosomiasis in the area were further investigated (Laamrani et al., 2000).

A study conducted in the area by Khallaayoune & El Hari (1991) has pointed out the occurrence of naturally infected Lymnaea truncatula by Fasciola hepatica. In 1997, Laamrani et al. (1997) first mentioned the occurrence of Paramphistomum microbothrium infecting Bulinus truncatus.

The transmission of fasciolasis occurs in traditional canals (earth canals) accessible to cattle as reported by El Hari (1991).

Schistosomiasis transmission occurs in siphons of modern irrigation system called “Puisards” that are suitable “swimming sites for school aged children.

However, the presence of snail infected with Paramphistomum microbothrium indicates a particular way of transmission as the cattle cannot access the elevated canals and siphons. The present study aimed at identifying how is the transmission taking place and to estimate the prevalence of natural infection in the snail intermediate host.

Therefore, a first investigation was done to establish the distribution of the snail intermediate host in relation to the habitats factors. A further survey was carried out to determine the seasonal changes in the natural infection of B. truncatus with P. microbothrium.

Indeed the occurrence of P. microbothrium has been mentioned in North Africa. B. truncatus is the intermediate host in Egypt (Say, 1976) and in Algeria (Kechmir, 1988).

However, so far, there is no documented evidence of its occurrence in Morocco.

The objective of the present study is to shed some light on a particular setting where the human behavior could contributes to the transmission of P. microbothrium.

MATERIALS AND METHODS

1. Area of study

The Tessaout Amont irrigation system lies in eastern part of the Haouz plain, between the eroded hills of Jebilet and the High Atlas Mountains. The plain has a semi-arid to arid climate, characterized by low and irregular rainfall from year to year as well as during the year. Annual precipitation in Attaouia, at the center of Tessaout Amont irrigation system, varies from 170 to 400 mm, with the main rainy season from October to May. In summer, there is drought with the hot Saharan Sirocco wind. Mean annual temperature is 20°C. Annual mean relative humidity is 54% and evaporation is 2300 mm/year (ANAFID, 1990).

2. Irrigation system

The irrigation system serves an area of 53.000 hectares, of which 33.000 are equipped with modern concrete irrigation canals. Another 20.000 ha are provided with water from the modern system through traditional canals, following traditional water rights. The system consists of a large dam with a storage lake and a diversion structure. Downstream after a sand trap, a large distribution structure conveys water to an extensive network of canals. The principal, primary, secondary and tertiary canals are cement lined. The elevated canals necessitate special provisions, siphons, to give access to fields and villages. Generally siphons are constructed to lead water under the road or track. A typical siphon consists to two rectangular boxes, usually 0.8 m by 0.8 (or 1.1) m and 2 m deep, connected by an underground pipe. Being below the canal level, these boxes contain water almost permanently. In the absence of wells or natural watercourses, the numerous siphon boxes represent an important source of water for the local population (Watts et al., 1998).

3. Study sites

A total of 223 sites over the irrigation system were sampled. The snail habitats consisting of canals and siphon boxes as well as drains and traditional canals as shown in the table 1.
Thereafter, a set of 18 sites consisting of siphon boxes was selected in order to follow up the seasonal changes of snail population and natural infection rate.

4. Sampling method

Densities of snails were recorded monthly from July 1995 to June 1997 using a drag-scoop. The scoop was made of a frame 10 cm x 20 cm supporting a wire mesh (0.8 mm) and was mounted on a 2 m long handle. It was used to scrape the walls of the siphon box from the bottom to the surface once on each of the four sides. Thus, scarping an area of 4 x 20 cm x depth in cm. Snail were sorted to species and their number recorded and then returned to the sites within 24 hours.

5. Snail infection

Snails collected were screened for infection by exposing them individually to artificial light for 4 hours, mostly between 12.00 and 16.00 p.m. Only patent infections are considered in the present study. The infected snails were brought to laboratory.

6. Experimental infection of the final host

Parasite identification was first done by Dr. Albaret of the Laboratory of Helminthology at Museum of Natural History in Paris. Metacercariae (Nb=1700) shed by *B. truncatus* naturally infected were used to infect two sheeps by oral ingestion. Adult worm was collected seven months and checked.

RESULTS

1. Snail distribution over the irrigation system (Table 2)

As shown in table 2, the irrigation system has a diverse snail fauna with nine species belonging to seven families. Planordid snails were the most frequent as they were found in 116 out of the 223 sampled sites. This result reiterates the wide distribution of *Bulinus truncatus* over the irrigation system. The ecological factors that underlie the occurrence of snails in Tassaout Amont irrigation system are discussed by Laamrani (1994).

<table>
<thead>
<tr>
<th>Snail habitat</th>
<th>Primary canals</th>
<th>Secondary canals</th>
<th>Secondary siphons</th>
<th>Tertiary siphons</th>
<th>Quaternary siphons</th>
<th>Drains</th>
<th>Earth canals</th>
<th>Tessaout River</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of samples</td>
<td>13</td>
<td>24</td>
<td>23</td>
<td>113</td>
<td>11</td>
<td>12</td>
<td>22</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2. Number of sites sampled per type of snail habitat

<table>
<thead>
<tr>
<th>GASTEROPODA</th>
<th>No. of Habits colonized out of 223 sampled sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonata</td>
<td></td>
</tr>
<tr>
<td>Planorbidae</td>
<td></td>
</tr>
<tr>
<td>Bulinus truncatus</td>
<td>103</td>
</tr>
<tr>
<td>Planorbius metidjensis</td>
<td>13</td>
</tr>
<tr>
<td>Lymnaeidae</td>
<td></td>
</tr>
<tr>
<td>Lymnaea peregra</td>
<td>99</td>
</tr>
<tr>
<td>Lymnaea truncatula</td>
<td>11</td>
</tr>
<tr>
<td>Physidae</td>
<td></td>
</tr>
<tr>
<td>Physa acuta</td>
<td>87</td>
</tr>
<tr>
<td>Anclyidae</td>
<td></td>
</tr>
<tr>
<td>Ancylus fluviatilis</td>
<td>32</td>
</tr>
<tr>
<td>Prosobranchia</td>
<td></td>
</tr>
<tr>
<td>Melanopsis praemorsa</td>
<td>56</td>
</tr>
<tr>
<td>Hydrobiidae</td>
<td></td>
</tr>
<tr>
<td>Mercuria confusa</td>
<td>22</td>
</tr>
</tbody>
</table>

LAMELLIBRANCHIA

| Sphaeriidae | |
| *Pisidium casertanum* | 20 |

2. Density of the snail intermediate host

Table 3 shows the highest densities of *B. truncatus* were normally found in tertiary and quaternary siphon boxes with respectively 36 and 11 snails/m². This is in line secondary with results previously reported from the area (Khallaayoune *et al.*, 1998). One way analysis of variance after Logarithmic transformation (Log snail count +1) showed a significant difference in density of *Bulinus truncatus* between habitats (p<0.01). The high density recorded in the drains is erratic as the sampled sites in drains where drying up and the snails were concentrated in small “breeding pockets”. The high standard deviation clearly demonstrates that the high density in drains is due to particularly high densities in a few sampling sites.
3. Seasonal changes in snail density

Figure 1 shows that the population of *B. truncatus* was present throughout the year, but snail abundance varied markedly over the period of the study. Highest density was recorded during the dry season. Thus, density of *B. truncatus* was high in July 1995, thereafter the density gradually decreased to August 1995 and remained low until April 1996. Then, density started to increase towards the late April 1996. Peaks of density were therefore recorded from May to September 1996 and at April 1997. This peak was then followed by a decline in density. This pattern was parallel to the temperature profile that increased gradually from March to August and decreased thereafter. The lowest densities were recorded during the cold season (November to February) because water temperature in the study area goes below 10°C.

4. Seasonal changes in natural infection

As shown in figure 1, over the period of observation, infected *B. truncatus* were collected near Lakhaoucha, Smoun and Sidi Meslem villages.

Infection rate was maximal in July 1995 when 0.73% snails were infected by *P. microbothrium*. The lowest rate was 0.12% recorded in October 1996 at Sidi Meslem. The occurrence of infected snails is sporadic and the pattern of infection is erratic. Infected snails were found in siphon boxes close to human habitation. Eggs of *P. microbothrium* are thrown in the siphon boxes when the viscera washed in the stagnant water. Therefore, eggs are put into the snail environment through a human activity and not by the final host as it occurs naturally.

Table 3. Density of *Bulinus truncatus* (individuals/m²) in different habitat in the Tessaout Amont irrigation system

<table>
<thead>
<tr>
<th>Snail habitat</th>
<th>Primary canals</th>
<th>Secondary canals</th>
<th>Secondary siphons</th>
<th>Tertiary siphons</th>
<th>Quaternary siphons</th>
<th>Drains</th>
<th>Earth canals</th>
<th>River</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Samples</td>
<td>13</td>
<td>24</td>
<td>23</td>
<td>113</td>
<td>11</td>
<td>12</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>Density of B. truncatus</td>
<td>0</td>
<td>3</td>
<td>19</td>
<td>36</td>
<td>11</td>
<td>61</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>5.7</td>
<td>75.2</td>
<td>96.8</td>
<td>32.9</td>
<td>137.2</td>
<td>33.4</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig 1. Seasonal changes in *Bulinus truncatus* density and natural infection by *Paramphistomum microbothrium*
DISCUSSION

The study shows another aspect of irrigation and water resource development on human and animal health as this was evidenced in several areas in developing countries (Hunter et al., 1980).

The results presented pointed out that Tessaout Amont irrigation system has a rich and dense malacofauna. Three mollusks of medical and veterinary importance were collected namely Bulinus truncatus, Planorbarius metidjensis and Lymnaea truncatula. B. truncatus is the intermediate host of Schisotosoma haematobium and Paramphistomum microbothrium.

However, no double infection was noticed. Planorbarius metidjensis from Tessaout Amont is susceptible to the sympatric strain of Schisosoma haematobium under laboratory conditions (Khallaayoune & Laamrani, 1995). However, no natural infection of this snail in the area is found so far.

The monthly monitoring of natural infection showed that snail infection of Bulinus truncatus with Paramphistomum microbothrium is low and erratic. Considering the presence of B. truncatus over the year, the low infection rate is probably due to the occasional occurrence of eggs of Paramphistomum microbothrium in the siphon boxes.

Though the number of infected snails was low, their percentage was relatively high in comparison of infection rates reported for other helminthiasis in the area such as schistosomiasis (Laamrani, 1994) and fasciolasis (Khallaayoune & El Hari, 1991).

The natural infection of B. truncatus by P. microbothrium raised the question of how the transmission cycle could be accomplished in elevated canals and structures.

The present study showed that contact between final hosts (small ruminants) and the intermediate host that colonize the irrigation system is facilitated by slaughtering of cattle done by the riparian.

The sporadic occurrence of natural infection in snails is related to the slaughtering of sheep and goats and their viscera washed or rinsed in the siphon boxes at occasions. Slaughtering takes place nearby the canal occasionally during seasonal activities such as olives harvesting or at celebrations of religious or social events. The final hosts is probably infected by direct ingestion of metacercariae encysted at the surface of floating material or the surface of the irrigated plants mainly Lucerne.

However, more investigation is needed to identify ways of infection of the final hosts.

The present study reiterated the occurrence of paramphistosomiasis in Morocco and the particular way of transmission occurring in a modern irrigation system in Morocco. Indeed, Laamrani et al. (1997) first mentioned the presence of the parasite in the area.

In fact the parasite is known to occur in different parts of the African continent. The disease is reported from Egypt by Say & Abdel-Rahman (1975). Kechmir (1988) in Algeria noticed infection rate of B. truncatus as low as those reported in the present study. Paramphistosomiasis was also reported in Sub-Saharien Africa by Dinnik & Dinnik (1954) and Sey (1982) and in Europe by Sey (1980).

However, the parasite and snail species are varying between geographical areas as reported by Brown (1994). Paramphistomum sukari is transmitted by Biomphalaria pfeifferi in Kenya (Dinnink, 1965) and in Ethiopia (Graber & Daynes, 1974). In Mauritius, Paramphistomum phillerouxi is transmitted by Bulinus forskalii (Dinnink, 1965).

In conclusion, in the study area, the intermediate host of P. microbothrium is B. truncatus. The infection is low sporadic. The control of P. microbothrium should first be oriented to the change of human behavior through information, education of the population.

The disease control and prevention requires the interruption of the cycle at the weakest link that seems to be in the current situation the miracidium. Any control program should aim at raising awareness of the villagers that viscera can wash at the same place just by taking out water from the siphon instead of washing them in the siphons.
REFERENCES

Dinnik JA (1965) The snail hosts of certain Paramphitomatidae and Gastrothylacidae (Trematoda) discovered by the late Dr. L. Le Roux in Africa. Journal of Helminthology 39: 141-150

